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The C terminal Jα-helix of the Avena Sativa’s Light Oxygen and Voltage (AsLOV2) 
protein, unfolds on exposure to blue light. This characteristic seeks relevance in 
applications related to engineering novel biological photoswitches. Using Molecular 
Dynamics (MD) simulations and Markov State Modeling (MSM) approach we provide 
the mechanism that explains the stepwise unfolding of the Jα-helix. The unfolding was 
resolved into seven steps represented by the structurally distinguishable states distributed 
over the initiation and the post initiation phases. Wherein, the initiation phase occurs due 
to the collapse of the interaction cascade FMN-Q513-N492-L480-W491-Q479-V520- 
A524, the onset of the post initiation phase is marked by breaking of the hydrophobic 
interactions between Jα-helix and Iβ-strand. This study indicates that the displacement of 
N492 out of the FMN binding pocket, not necessarily requiring Q513, is essential for the 
initiation of the Jα-helix unfolding. Rather, the structural reorientation of Q513 activates 
the protein to cross the hydrophobic barrier and enter the post initiation phase. Similarly, 
the structural deviations in N482, rather than its integral role in unfolding, could enhance 
the unfolding rates. Further, the MSM studies on the wild type and the Q513 mutant, 
provide the spatio-temporal roadmap that layout the possible pathways of structural 
transition between the dark and the light states of the protein. Overall, the study provides 
insights useful to enhance the performance of AsLOV2 based photoswitches.

Abstract

Overall, the study provides the spatio-temporal roadmap for the light induced Jα-helix 
unfolding of AsLOV2. This work highlights two potential features (i) the disruption of the 
interaction cascade L480-W491-Q479-V520-A524 between the FMN and the JαN segment 
is essential for initiation of unfolding and (ii) Q513 reorientation promotes efficient 
unfolding through activating the protein to bypass the hydrophobic barrier. The structural 
insights discussed here are imperative and useful due to the wider role of LOV2 domains 
in development of efficient photoswitches and its applications in optogenetics (1-8).
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Results
AsLOV2 Jα-helix unfolds in a stepwise manner 

Localized dynamics in AsLOV2 core, corresponds to the unfolding of the different 
segments of the Jα-helix 

Disruption of the interaction cascade that links the FMN and the N terminal of the 
Jα-helix is essential for the initiation of the Jα-helix unfolding

N492’s transient displacement, 
irrespective of Q513 is sufficient for the 
disruption of the interaction cascade

Methodology

Results

Conclusions

Spatio-temporal road map showing 
pathways that lead to light activated 
stepwise unfolding of AsLOV2 Jα-helix

Q513 promotes Jα-helix unfolding across the hydrophobic barrier


