Abstract

CHT7 1s a regulator of quiescence repression In

Chlamydomonas  reinhardtii.  Initially, CHT7’s
repression activity was thought to be managed by Its
DNA-binding CXC domain. But it was later observed
that not CXC but CHT7’s predicted protein domains
were proposed to be involved In Its activities. Yet, it
remains unclear why and how CHT?7 refrains its CXC
domain from participating In any transcriptional
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activities. Through biophysical experiments and ..

. . Promoter prediction
molecular dynamics approaches, we studied the DNA sina the PromPredict
recognition behavior of CHT7-CXC. The results ’lcjoolg

Indicate that this domain possess sequence selectivity.
Further, to understand If CXC loses its DNA binding
capabilities In the vicinity of other repressors, we
examined CHT7-CXC’s DNA binding stability under
the spatial constraint conditions created by fusing
CHT7-CXC with AsLOV2. The results show limited
ability of CHT7-CXC to withstand steric forces and
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provide insights to why and how algal cells may hold
back CHT/-CXC’s Indulgence In quiescence
repression.
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Sequence alignment of CXC domains of different proteins. MSL2 from Drosophila melanogaster, EZH2 from humans, CHT7’s .

(Crell1.g481800.t1.1 ) CXC domain from Chlmydomonas reinhardtii, LIN54 from humans, TESMIN from Mouse, Crel2
(Crel2.g550250.t1.2) and Cre08 (Cre08.9361400.t1.2) are other two CXC domain containing proteins in Chlmydomonas
reinhardtii, CPP1 from Soybedd?TE01 from higher plants.
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CHT7’s alpha fold structural model represented in the cartoon is shown from two different angles
In grey. Enclosed within it is the brown sphere representing the inner boundary line of the CHT7
residues excluding and surrounding the CXC domain. Enclosed within this sphere is the CXC

DNA (T%\Z‘complex structure in cartoon.
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Bar graph shows the number of mis regulated Photosynthetic, Flagellum, CDKs and Autophagy genes in the cht7 # ]
mutant that contains six nucleotide (TTYRAA, TTTGAA, CCTGAA, CCTGCC and TTTGCC) sites in the promoter ’
regions within1000 bps upstream of the 5’UTR.
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Fluorescence polarization assay (FPA) demonstrating change in fluorescence anisotropy (AA) of 5nM 6-FAM labeled

DNA with change in concentration

Following are the conclusion drawn from the work:

1. CXC binding is dependent on the DNA length.

2. Possibly, the CXC undergoes a slide and search mechanism to recognize
the specific binding stretch of the DNA.

3. Two subdomains possess asymmetric DNA binding abilities.

4. DNA recognition ability of CXC is partly dependent on the loop between
the two subdomains.

5. Molecular crowding due to the formation of the CHT7 complex could
Induce structural changes within the CHT7, which switches CXC to the
conformational state incapable of DNA binding.

component (pcl) of the CHT7_CXC structure in complex with DNA
containing binding regions TTTGAA, CCTTGAA, CCTGCC and
TTTGCC are

lotted in blue, purple, red and green, respectively..
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Molecular dynamic structures of the molecular fusion of Avena Sativa’s LOV2 (AsLOV,) and
CHT7_CXC generated under the dark (LOVp-CXC) and the light (LOV_-CXC) conditions in
complex with 12mer DNA duplex containing TTTGAA as the binding region.
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